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Tundra shrub expansion in a warming climate and the influence of data type on 
models of habitat suitability
Jordan H. Seidera, Trevor C. Lantza, and Christopher Boneb

aSchool of Environmental Studies, University of Victoria, Victoria, British Columbia, Canada; bDepartment of Geography, University of Victoria, 
Victoria, British Columbia, Canada

ABSTRACT
Warming across the low Arctic is increasing tundra vegetation productivity and facilitating the 
expansion of upright shrubs. We modeled the effects of warming on habitat suitability in green 
alder, dwarf birch, Labrador tea, bog bilberry, and lingonberry and assessed the influence of data 
type (true absence or pseudo-absence) on species distribution models (SDMs). We generated SDMs 
using the two absence data types under current (1970–2000) and future (2061–2080) climate 
projections. Our results show that warming leads to range expansion of all shrubs, though 
responses vary in magnitude and extent, with mean increases in suitability ranging from 0.080 
(Labrador tea) to 0.369 (lingonberry) with true absences. Differences in driving variables and 
suitability projections suggest that physiological and ecological variability between species med-
iate responses to warming. Between data types, we observed inconsistencies in model perfor-
mance, suitability projections, and variable importance. Bog bilberry and lingonberry exhibited 
larger differences in suitability (0.201 and 0.288, respectively), whereas alder showed similar 
responses (difference of 0.01). These results are important to consider when assessing changes in 
habitat suitability or identifying environmental or climatic determinants of species’ distributions. 
We suggest further development of open data repositories, facilitating access to true absence data 
to support conservation and land use planning.
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Introduction

Warming air temperatures and altered precipitation 
at high latitudes are driving shifts in tundra vegeta-
tion, increases in the frequency of the disturbance 
associated with permafrost thaw, and changes in the 
extent of surface water (Kokelj et al. 2015; Vincent 
et al. 2015; Intergovernmental Panel on Climate 
Change 2019; Travers-Smith, Lantz, and Fraser 
2021). Field-based and remote sensing research 
shows that increases in the productivity of tundra 
vegetation have been caused primarily by the prolif-
eration of tundra shrubs (Lantz, Marsh, and Kokelj 
2013; A. Chen et al. 2021; Seider et al. 2022). 
Increased growth and reproduction in response to 
natural and experimental warming has also been 
observed in alder and birch (Tape, Sturm, and 
Racine 2006; Walker et al. 2006; Ropars and 
Boudreau 2012; Moffat et al. 2016; Bjorkman et al. 
2020; Travers-Smith and Lantz 2020; Mekonnen, 

Riley, Berner et al. 2021), but additional research is 
required to explore the climate sensitivity of other 
common tundra shrubs.

Documenting variation in the responses of different 
shrub species to climate change is important because 
vegetation structure has a significant impact on carbon 
cycling, permafrost dynamics (McGuire et al. 2006), and 
the climate system (Bonan et al. 2003; Port, Brovkin, and 
Claussen 2012). As such, understanding the influence of 
shrubs and vegetation change on these processes is 
important for existing global climate models. Accurate 
projections of changes in shrub abundance are also 
important because shrubs are expected to significantly 
impact wildlife habitat (Joly et al. 2007; Ehlers et al. 
2021) and subsistence hunting in northern communities 
(Wildlife Management Advisory Council, North Slope & 
Aklavik Hunters and Trappers Committee 2018).

Species distribution modeling is a common technique 
used to quantify the influence of climate and terrain 
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factors on the ranges of terrestrial vegetation and to 
assess the impacts of climate warming on their future 
distributions (Guisan and Zimmermann 2000). Many 
species distribution models (SDMs) utilize presence- 
only data, which are widely available in open-access 
repositories such as the Global Biodiversity 
Information System (gbif.org). With the exception of 
profile techniques (e.g., BIOCLIM, DOMAIN, ecological 
niche factor analysis), models built using presence-only 
data rely on randomly selected pseudo-absence (or back-
ground) data to represent absence locations. These are 
used to provide information on the total variability in 
environmental predictors across a selected area (Phillips 
et al. 2009) and to represent locations where species are 
not present for logistic regression or other binary 
response methods that require absence data (Wisz and 
Guisan 2009).

In their review of 250 SDM studies, Santini et al. 
(2021) found over 84 percent of SDMs used pseudo- 
absences or background data. However, a lack of best 
practices to determine pseudo-absence locations adds to 
the confusion and reduced interpretability of SDM stu-
dies using this approach (Barbet-Massin et al. 2012; 
Santini et al. 2021). Previous studies have shown that 
the use of pseudo-absence data can negatively impact 
model performance and interpretation through sam-
pling bias and poor data quality and spatial accuracy 
(Pearce and Boyce 2006). When pseudo-absence loca-
tions do not complement spatial coverage and sampling 
effort of presence observations, model predictions lose 
the ability to accurately portray distributions across the 
entire study domain (Phillips et al. 2009). On the con-
trary, standard performance metrics indicate that many 
studies using pseudo-absence data have also performed 
favorably (Barbet-Massin et al. 2018; Zhang et al. 2019; 
Kaky et al. 2020), which suggests the need for 
further investigation into overall performance of such 
data.

This study focusses on the Beaufort Delta region in 
the western Canadian Arctic, the area experiencing the 
most rapid temperature increases in Canada (Vincent 
et al. 2015). This warming is increasing the productivity 
of tundra landscapes (Tape, Sturm, and Racine 2006; 
Lantz, Marsh, and Kokelj 2013; Fraser et al. 2014; 
Campbell et al. 2021; Seider et al. 2022) and facilitating 
widespread shrub proliferation (Lantz, Marsh, and 
Kokelj 2013; Moffat et al. 2016; Travers-Smith and 
Lantz 2020). In our analysis, we explore differences in 
the sensitivity of five common tundra shrub species to 
climate change by comparing projected changes in habi-
tat suitability with climate warming. Specifically, we 
developed SDMs for green alder (Alnus viridis), dwarf 
birch (Betula glandulosa and B. nana), Labrador tea 

(Ledum decumbens), bog bilberry (Vaccinium uligino-
sum), and lingonberry (Vaccinium vitis-idaea) and 
applied a future high-emissions climate scenario pro-
jecting habitat suitability to the period between 2061 and 
2080. With these models, we also investigate how data 
type (true absence or pseudo-absence) influences (1) 
SDM performance, (2) estimates of habitat suitability, 
and (3) projections of change in habitat suitability for 
the five shrub species. By exploring the use of different 
data types, we also seek to understand how differences in 
the data type may influence the application of SDMs, 
particularly with regards to regional vegetation distribu-
tions in a warming climate. These models were built 
under the assumption of a stationary relationship with 
respect to the environment. Our models are not 
mechanistic and do not account for seed dispersal or 
establishment, which could be important for potential 
future distributions of these species. Our investigation 
into how SDM parameterization potentially affects habi-
tat suitability projections can provide insights on the use 
of this technique and its application in conservation and 
land use planning.

Methods

Study area

This study focuses on the Beaufort Delta region of 
northern Yukon and Northwest Territories, covering 
an area of approximately 161,000 km2 (Figure 1). The 
southern portion of this area includes the Yukon and 
Tuktoyaktuk Coastal Plains and the Bathurst Peninsula 
ecoregions, which are characterized by rolling hills 
dominated by shrub and tussock tundra as well as low- 
lying wetland habitats (Yukon Ecoregions Working 
Group 2004; Ecosystem Classification Group 2012). 
The Yukon and Tuktoyaktuk Coastal Plain ecoregions 
are separated by the Mackenzie Delta ecoregion, which 
consists of low-lying alluvial terrain where a mosaic of 
forest, woodland, shrubland, and sedge wetland is 
strongly influenced by the hydrology of the delta (D. 
Gill 1972, 1973; C. Pearce 1986; Burn and Kokelj 2009). 
The northern part of the study area includes the Banks 
Island Coastal Plain and Banks Island Lowland ecore-
gions, a mid-Arctic landscape characterized by hum-
mocky tills and glaciofluvial plains with some exposed 
bedrock throughout (Ecosystem Classification Group 
2012). Vegetation communities on Banks Island are 
controlled primarily by soil moisture (Campbell et al. 
2021) with well-drained upland terrain occupied by 
a mix of barrens and dwarf shrub tundra and wetter 
lowland terrain dominated by more productive sedge 
tundra (Ecosystem Classification Group 2012). All 
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Figure 1. Map of the study area in the Beaufort Delta region. (a) The extent of main map (red) in North America and (b) an enlargement 
of Herschel Island (the green rectangle on the main map). (c) A photograph of typical terrain and ground cover on Banks Island (photo 
by T. Lantz). (d) A photograph of typical terrain and ground cover on the Tuktoyaktuk Coastlands (photo by J. Seider).
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regions within the study area are underlain by contin-
uous permafrost and exhibit common permafrost fea-
tures such as polygonal terrain, hummocks, and thaw 
slumps (Rampton 1982, 1988; Yukon Ecoregions 
Working Group 2004; Ecosystem Classification Group 
2012). With the exception of the Yukon Coastal Plain 
and of the northern tip of Tuktoyaktuk Peninsula, the 
study area was covered by the Laurentide Ice Sheet 
during the Wisconsinan Glaciation (Jessop 1971; 
Rampton 1988; Ecosystem Classification Group 2012).

Study design overview

To investigate the effect of climate warming on the 
distribution of tundra shrubs, we used SDMs to project 
habitat suitability for five common tundra shrubs (alder, 
birch, Labrador tea, bog bilberry, and lingonberry) 
under a high-emissions climate scenario for 2061 to 
2080. To assess the influence of data type on ensemble 
SDM performance and predictions of habitat suitability, 
we created two models for each species: one using true 
absence data and one using pseudo-absence data. 
Because all other model parameters and environmental 
variables remain constant, we attribute differences in 
model performance and predictions of suitability to 
data type.

Species

We selected species for this analysis representing 
a variety shrub functional types and growth forms. 
Green alder (Alnus viridis, also known as A. crispa or, 
more recently, A. alnobetula) is a deciduous tall shrub. 
This shrub has a broad distribution across the Northern 
Hemisphere and is known to establish on newly exposed 
mineral soils after disturbance (Furlow 1979). Green 
alder is primarily a subarctic species (Furlow 1997), 
but several recent studies have documented increases 
in alder stand density and abundance across the low 
Arctic tundra of Alaska (Tape, Sturm, and Racine 
2006), Northwest Territories (Travers-Smith and Lantz 
2020), Labrador (Larking et al. 2021), and Siberia (Frost 
and Epstein 2014). We used a species complex including 
Betula glandulosa and B. nana to describe dwarf birch, 
a deciduous dwarf shrub. These dwarf birches are both 
found on nutrient-poor, well-drained, moist acidic soils 
across the circumpolar range (De Groot, Thomas, and 
Wein 1997). They are taxonomically confused, particu-
larly where their ranges overlap and hybridization 
makes species identification difficult (De Groot, 
Thomas, and Wein 1997). For this reason, we consider 
observations of both of these species to represent this 
deciduous shrub species complex. Marsh Labrador tea 

(Ledum decumbens, also known as L. palustre or, more 
recently, Rhododendrom tomentosum) is a low shrub 
with evergreen leaves. This species is commonly found 
in mesic dwarf shrub or lichen heaths across a largely 
circumpolar range (Scoggan 1979). Bog bilberry 
(Vaccinium uliginosum) is a deciduous shrub commonly 
found in nutrient-poor, moist-to-wet acidic soils with 
a circumpolar range (Jacquemart 1996). Finally, lingon-
berry (V. vitis-idaea) is an evergreen dwarf shrub com-
mon across the low Arctic and southern boreal forest on 
dry to moist soils (Taulavuori, Laine, and Taulavuori 
2013). Throughout this article, we refer to each species 
by its common name.

Plot-level presence/absence data used to parameterize 
models were obtained from a number of sources. 
Vegetation data from the Northwest Territories were 
collected from surveys conducted between 2005 and 
2019 (see Lantz et al. 2009; Lantz, Gergel, and Henry 
2010; Gill et al. 2014; Steedman 2014; Cameron and 
Lantz 2016; Chen 2020; Travers-Smith and Lantz 2020; 
Shipman 2021; Seider et al. 2022). Vegetation cover data 
from across northern Yukon were obtained, with per-
mission, from the Yukon Biophysical Inventory System 
(Yukon Territorial Government 2021). These data were 
collected from field surveys conducted between 2000 
and 2015. Data from southern Banks Island were 
obtained, with permission, from the Canadian Wildlife 
Service (see Campbell et al. 2021). To use these percen-
tage cover data in our SDMs, we converted them to 
presence/absence for each species at each site (see 
Supplementary Figures S1 to S5 for the spatial distribu-
tions of presence/absence points for each species). The 
spatial accuracy of the plot locations for all of these data 
sources is much greater than the 30-arcsecond resolu-
tion of the environmental predictors. To minimize the 
possibility of pseudoreplication and to ensure that mod-
els were not trained using multiple observations within 
the same cell, we implemented a spatial thinning proce-
dure to ensure that no two observations were closer than 
5 km using the “ensemble.spatialThin” function from 
the BiodiversityR package (v2.12–3; Kindt and Coe 
2005). We chose the thinning distance of 5 km as 
a conservative buffer because the spatial resolution of 
30 arcseconds of predictor variables at the northernmost 

Table 1. Percent of all plots sampled with observed presence 
(prevalence) of modeled species from field survey data.

Species Prevalence (%)

Alder 18.2
Birch 44.1
Labrador tea 34.9
Bog bilberry 25.6
Lingonberry 43.7
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point of our study area is approximately 1 km. The 
prevalence of each species is listed in Table 1.

To use these data in presence-only models, we con-
verted presence/absence data to presence-only data by 
removing any observations of true absences from the 
data. We then used a random pseudo-absence strategy 
selecting points with a minimum distance of 5 km from 
presence locations to generate pseudo-absence points 
using the “BIOMOD_FormatingData” function. This 
strategy implements a random selection of points from 
all possible cells of predictor data outside the predeter-
mined buffer (see Fournier et al. 2017; Kaky et al. 2020), 
providing a sample of predictor variability that can be 
contrasted to the variability within presence locations 
(Phillips et al. 2009). The total number of pseudo- 
absence points in each selection equals the number of 
observed presence locations.

Climate predictor variables

Historic (1970–2000) climate data (30-arcsecond resolu-
tion) used to parameterize our models were obtained 
from the WorldClim v2.1 data set (Fick and Hijmans 
2017). Climate parameters in this data set consist of 
nineteen ecologically relevant variables derived from 
average monthly temperature and precipitation values 
(Fick and Hijmans 2017). We performed a hierarchical 
cluster analysis following the method used by Fournier 
et al. (2017) on these data and grouped the nineteen 
variables using the resulting correlation matrix. 
Variables were grouped if they had a Pearson’s 
r greater than 0.7. We then selected one variable from 
each group to best represent a diversity of climate factors 
relating to temperature and precipitation. Based on this 
clustering, we chose the following seven variables to 
represent climate across the study area: annual mean 
temperature, mean diurnal range, isothermality, tem-
perature seasonality, mean temperature of the coldest 
quarter, precipitation seasonality, and precipitation of 
the warmest quarter (Table 2).

Species range projections utilized downscaled global 
climate model (GCM) data from the Coupled Model 
Intercomparison Project Phase 5 (CMIP5; Taylor, 
Stouffer, and Meehl 2012). To obtain these data, we fol-
lowed methods described in Lee, Williams, and Pearson 
(2019) and used a multimodel ensemble of four GCMs 
(CCSM4 from the National Center for Atmospheric 
Research, GFDL-CM3 from the Geophysical Fluid 
Dynamics Laboratory, HadGEM2-ES from the Met 
Office Hadley Center, and MPI-ESM-LR from the Max 
Planck Institute for Meteorology). We chose the 
Representative Concentration Pathway (RCP) 8.5 sce-
nario developed for CMIP5 to base our models on the 

most severe estimates of future warming. This worst-case 
scenario presents a future defined by high carbon emis-
sions with radiative forcing of 8.5 W/m2 by 2100 (Moss 
et al. 2010). These GCMs are available as downscaled data 
using WorldClim (v1.4) as the climate baseline and aver-
aged from 2061 to 2080 to 30-arcsecond resolution 
(Hijmans et al. 2005). To create the ensemble climate 
projection, we took a simple average of each individual 
bioclimatic variable from each GCM, as obtained from 
WorldClim, using the terra package. Maps of each vari-
able under current and future climate conditions are 
presented in Supplementary Figures S6 and S7.

Environmental predictor variables

We used elevation data from the ArcticDEM available 
from the Polar Geospatial Center (Porter et al. 2018) to 
create a 2-m resolution digital elevation model (DEM) 
across the study area. We aggregated the DEM to 30-m 
resolution by taking the mean of the subpixels before 
applying any further transformations to improve data 
processing efficiency. Cells of missing data in this DEM 
were filled using the Multi-Error-Removed Improved 
Terrain DEM (Yamazaki et al. 2017) that we resampled 
to match the resolution and extent of the ArcticDEM 
area using the bilinear method in the “resample” func-
tion of the terra package. We calculated slope using the 
“terrain” function from the terra package and the vector 
ruggedness measure (VRM) using the tool developed by 
Sappington, Longshore, and Thompson (2007) imple-
mented in ESRI ArcMap (v10.6.1). VRM provides 
a measure of ruggedness that is independent of slope 

Table 2. Bioclimatic variables from WorldClim (Fick and Hijmans 
2017) used in this analysis.

Identifier Bioclimatic variable Variable description

BIO_01 Annual mean 
temperature

Average of monthly mean  
temperature (°C)

BIO_02 Mean diurnal range Average of monthly temperature 
ranges (°C)

BIO_03 Isothermality Mean diurnal temperature range 
divided by annual temperature 
range

BIO_04 Temperature 
seasonality

Temperature variability over the year 
measured as a ratio of the standard 
deviation of the monthly mean 
temperatures to the mean monthly 
temperature (%)

BIO_11 Mean temperature of 
the coldest quarter

Mean temperature of the coldest 
consecutive three months (°C)

BIO_15 Precipitation 
seasonality

Variation in monthly precipitation over 
the year measured as a ratio of the 
standard deviation of the monthly 
total precipitation to the mean 
monthly total precipitation (%)

BIO_18 Precipitation of the 
warmest quarter

Sum of monthly precipitation values for 
the three warmest consecutive 
months

Note. Variable descriptions are from O’Donnell and Ignizio (2012).
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and is represented as an index value between 0 and 1, 
where 0 is considered flat and 1 is most rugged 
(Sappington, Longshore, and Thompson 2007). 
Throughout this article, we refer to VRM as “rugged-
ness.” We also calculated aspect and the topographic 
wetness index for this analysis; however, in early model 
iterations these variables were among the least impor-
tant and were dropped from subsequent models. We 
resampled all environmental data from 30 meters to 
match the 30-arcsecond resolution used in this analysis 
using the bilinear method of the “resample” function in 
the terra package. Maps of elevation, slope, and rugged-
ness are presented in Supplementary Figure S8. We also 
used the National Aeronautic and Space 
Administration’s Arctic Boreal and Vulnerability 
Experiment annual land cover classification (Wang 
et al. 2019) to remove any cells from the analysis that 
were classified as “water” in 2014 (the last available year 
of data).

Species distribution modeling

We constructed SDMs for five common tundra shrub 
species to investigate the relative response of each spe-
cies to climate change under projected climate warming 
scenarios. We also evaluated the influence of data type 
(presence/absence data or presence/pseudo-absence 
data) on model performance and suitability predictions.

Ensemble SDMs were generated using the biomod2 
package (v4.0; Thuiller et al. 2022) in the R statistical 
software (R Core Team 2019). Ensemble models 
included generalized linear models, generalized boosted 
models (GBM), multiple adaptive regression splines, 

artificial neural networks, and random forest (RF) algo-
rithms, which were set to use default modeling options 
in the biomod2 package. These models represent a mix 
of traditional linear techniques (generalized linear mod-
els and multiple adaptive regression splines), decision 
trees (GBM and RF), and machine learning (artificial 
neural networks, GBM, and RF) algorithms (see 
Table 3). Ensemble SDM analyses commonly use 
a wide variety of such algorithms with successful results 
(Fournier et al. 2017; Lee, Williams, and Pearson 2019; 
Kaky et al. 2020). We chose to use an ensemble method 
because recent work has shown that no single SDM 
algorithm has superior prediction power (Segurado 
and Araújo 2004; Hao et al. 2020). The ensemble 
method has also been shown to outperform individual 
models in SDM studies (Marmion et al. 2009). We 
generated ensemble models to create projections of spe-
cies habitat suitability by taking the mean of individual 
models. We also used ensemble models to project future 
habitat suitability using CMIP5 RCP8.5 climate data.

To independently evaluate the performance of 
ensemble SDMs, we used independent validation data 
to calculate a series of performance metrics listed in 
Table 4. For each ensemble model, we set aside 
a random subset of 10 percent of the data for this 
purpose. Because individual metrics provide different 
information on model performance and there can be 
disagreement with the influence of data on performance 
metrics (such as prevalence on area under the receiver 
operating characteristic curve [AUC]; see Allouche, 
Tsoar, and Kadmon 2006; Leroy et al. 2018), we use 
multiple metrics to test model performance (Table 4). 
Because all metrics seek to highlight different aspects of 

Table 3. Model descriptions.
Algorithm R package Description

Generalized linear model glm Extension of ordinary linear regression allowing for error distributions other than Gaussian
Generalized boosted 

model
gbm Nonparametric method using a combination of decision tree models implemented with boosting methods for 

weighted randomization of data in each successive tree
Multiple adaptive 

regression splines
earth Nonparametric method creating multiple linear regression models (with different slopes) across the range of data 

and finding the optimal connection points between each segment to create one model
Artificial neural networks nnet Single hidden layer neural network using backpropagation to adjust weights and biases to increase model 

performance.
Random forest randomForest Ensemble decision tree algorithm incorporating randomized bagging method to a subset of available data used 

in each individual tree. Data are run through all trees and the final classification is based on the majority vote.

Table 4. Description of performance metrics used for model evaluation.
Performance metric Description Range

Percentage correctly classified Percentage of independent evaluation data correctly classified as either presence or absence [0, 1]
Sensitivity Probability of a true positive classification on evaluation data [0, 1]
Specificity Probability of a true negative classification on evaluation data [0, 1]
Area under the receiver operating 

characteristic curve
Threshold-independent measure calculating the area under the receiver operating characteristic curve (plot 

of false positives as a function of sensitivity for all possible threshold values)
[0, 1]

True skill statistic Modified form of Cohen’s kappa to theoretically remove dependence on species prevalence [−1, 1]
Overprediction rate Proportion of false presences among all predictions [0, 1]
Bias Average difference between actual observation and predicted probability of observed presence in 

independent data
—

ARCTIC, ANTARCTIC, AND ALPINE RESEARCH 493



the performance and accuracy of modeled results, con-
sidering many such metrics allowed us to better under-
stand the overall performance for comparative purposes. 
We also created a null model with 100 randomly allo-
cated “presence” locations and 100 randomly allocated 
“absence” locations (similar to sample size of the three 
shrubs) to determine the relative performance of each 
SDM model against random predictions.

We used the variable importance function in bio-
mod2 to understand the potential drivers of shrub spe-
cies’ distributions in the Beaufort Delta region and to 
assess the influence of environmental predictors on 
habitat suitability under projected climate warming. 
This function calculates variable importance by rando-
mizing a single variable in each of five randomized 
permutations to calculate the correlation between the 
predictions of the complete and randomized variable 
ensemble models (Thuiller et al. 2022). Variables that 
have a lower correlation value when removed from the 
model are assumed have greater influence on model 
predictions.

Results

Our SDMs projected that climate warming will enhance 
habitat suitability of all shrubs considered in this 
study beyond the current range limits of all species 
(Figures 2–6; Table 5). However, contrary to our expec-
tations, climate warming also reduced habitat suitability 
for species in the core regions (area of highest suitabil-
ity) of their current habitat suitability projections 
(Figures 2–6). This was particularly in the pseudo- 
absence models. These general trends of change are 
observable with both data types, although true absence 
data tend to result in greater increases of habitat suit-
ability (Table 5). Projected shifts in habitat suitability in 
response to climate warming showed similar patterns 
among true absence models, but the magnitude of 
change differed considerably among species. The great-
est increase in suitability across the entire study area was 
lingonberry, with an increase in suitability of 0.369. The 
species with the lowest observed change in habitat suit-
ability was Labrador tea, increasing by 0.080 (Table 5). 

Table 5. Mean and standard deviation of habitat suitability across the entire study area for each model under 
current (1970 to 2000) and future (2061 to 2080) climate.

True absence Pseudo-absence

Mean
Standard  
deviation Mean

Standard  
deviation

Alder (Alnus viridis) Current 0.109 0.199 0.166 0.229
Future 0.329 0.084 0.375 0.129
Change 0.220 — 0.210 —

Birch (Betula nana and B. glandulosa) Current 0.298 0.292 0.236 0.287
Future 0.446 0.141 0.335 0.096
Change 0.149 — 0.099 —

Labrador tea (Ledum decumbens) Current 0.279 0.267 0.217 0.282
Future 0.359 0.125 0.317 0.053
Change 0.080 — 0.100 —

Bog bilberry (Vaccinium uliginosum) Current 0.274 0.251 0.245 0.307
Future 0.505 0.063 0.274 0.104
Change 0.230 — 0.029 —

Lingonberry (V. vitis-idaea) Current 0.287 0.286 0.227 0.303
Future 0.655 0.103 0.308 0.072
Change 0.369 — 0.081 —

Table 6. Ensemble model performance metrics calculated using independent data.
Threshold PCC Sensitivity Specificity AUC TSS OPR Bias

A. viridis TA 0.272 0.857 0.800 0.909 0.882 0.709 0.111 0.204
PA 0.513 0.857 0.900 0.818 0.836 0.718 0.182 −0.037

Betula spp. TA 0.541 0.789 0.900 0.667 0.744 0.567 0.250 −0.014
PA 0.570 0.810 0.909 0.700 0.964 0.609 0.231 −0.046

L. decumbens TA 0.508 0.750 0.808 0.667 0.879 0.485 0.250 0.042
PA 0.527 0.905 1.000 0.800 0.936 0.800 0.154 −0.003

V. uliginosum TA 0.433 0.800 0.818 0.778 0.798 0.596 0.182 0.117
PA 0.558 0.667 0.818 0.500 0.773 0.318 0.357 −0.034

V. vitis-idaea TA 0.390 0.789 0.875 0.727 0.852 0.602 0.300 0.031
PA 0.554 0.714 0.818 0.600 0.745 0.418 0.308 −0.030

Average TA 0.429 0.797 0.842 0.750 0.831 0.592 0.219 0.076
PA 0.544 0.791 0.889 0.684 0.851 0.573 0.246 −0.030

Null model 0.469 0.478 0.385 0.600 0.535 −0.015 0.444 0.096

Note. Bolded values indicate the highest performing model for each species (higher value for all except OPR and bias) between true absence (TA) and pseudo- 
absence models (PA). Null model created using randomized presence and absence locations. PCC = percentage correctly classified; AUC = area under the 
receiver operating characteristic curve; TSS = true skill statistic; OPR = overprediction rate.
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On Banks Island, habitat suitability showed large 
increases in response to climate for all shrub species 
modeled (Figures 2–6).

The SDMs constructed in this analysis ran with mod-
erate or reasonable model performance but exhibited 
considerable variation among performance metrics 
(Table 6). With respect to the two most commonly 
used model performance metrics, AUC and true skill 
statistic (TSS), on average, AUC noted marginally better 
performance on pseudo-absence data and TSS showed 
better performance with true absence data (Table 6). On 
average, percentage correctly classified, specificity, TSS, 
and overprediction rate (OPR) indicate better perfor-
mance for SDMs with the implementation of true 
absence data (Table 6).

These SDMs also showed large differences in habitat 
suitability projections for current climate conditions 
between true absence and pseudo-absence models 
(Figures 2–6). For alder, the pseudo-absence model pro-
jected greater suitability along the coastal margin of the 
Yukon North Slope and near the communities of Inuvik 
and Tuktoyaktuk compared to the true absence model, 
which had the highest habitat suitability along the 

southern part of the study area in the Mackenzie Delta 
(Figure 2). Birch and lingonberry had similar habitat 
suitability, but the spatial pattern varied between models 
using true absence and pseudo-absence data (Figures 3 
and 6). The true absence models for birch and lingon-
berry showed high suitability over a large area including 
the Tuktoyaktuk Coastlands. In contrast, the pseudo- 
absence models for these species had the highest suit-
ability across the Yukon North Slope and a more 
restricted portion of the Tuktoyaktuk Coastlands. 
Labrador tea exhibited similar suitability between data 
types (Figure 4). The projected suitability of bog bilberry 
also showed differences between data types, highlighting 
higher suitability in the Richardson Mountains using 
true absence data, but with pseudo-absence data the 
modeled area of suitability also included the more 
coastal areas of the Yukon North Slope and parts of 
the Tuktoyaktuk Coastlands (Figure 5). Lastly, in the 
cases of bog bilberry and lingonberry, there were notable 
differences between true absence and pseudo-absence 
models on Banks Island, with suitability exceeding 0.5 
in the true absence models for these species (Figures 5 
and 6).

Figure 2. Ensemble habitat suitability maps (gray box) for alder (Alnus viridis) projected under current and future climate conditions 
using true absence and pseudo-absence models. Banks Island is inset over the mainland portion of the study area for enhanced 
visualization. Plots (A)–(D) correspond to differences between climate projections and data types along the columns and rows.
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When considered across both data types, the three 
most commonly important variables across all species 
are the annual mean temperature, precipitation of the 
warmest quarter, and elevation (Table 7). Differences in 
variable importance between data types were otherwise 
species dependent. True absence and pseudo-absence 
models also showed variation in the most important 
variables driving model projections (Table 7). This is 
particularly notable for bog bilberry in which the most 
important variable for true absence is mean diurnal 
range but ranked least important in the pseudo- 
absence model (Figure 7).

The rank and magnitude of important variables also 
differed substantially between species in true absence 
models (Figure 7). For example, annual mean tempera-
ture was key in predicting the distributions of birch, 
Labrador tea, and lingonberry, whereas alder and bog 
bilberry showed a greater reliance on variables derived 
from elevation or precipitation data (Figure 7). Of all 
variables in true absence models, annual mean tempera-
ture, precipitation seasonality, and precipitation of the 

warmest quarter were most often of high importance 
across all modeled species (Table 7).

Discussion

Tundra shrub response dynamics

Our results support existing literature showing that cli-
mate warming will drive range expansion in tundra 
shrubs (Epstein et al. 2004; Myers-Smith and Hik 2018; 
Mekonnen, Riley, Berner et al. 2021), but suggests that 
the magnitude of change will differ considerably among 
species. Our models also highlight the potential for high 
Arctic landscapes not currently dominated by shrubs to 
become climatically suitable in the near future. This 
finding is consistent with recent remote sensing and 
field-based studies that have documented the prolifera-
tion of shrubs in tundra landscapes across the circum-
polar region (Tape, Sturm, and Racine 2006; Myers- 
Smith et al. 2011; Jørgensen, Meilby, and Kollmann 
2013; Lantz, Marsh, and Kokelj 2013; Fraser et al. 2014; 

Figure 3. Ensemble habitat suitability maps (gray box) for birch (Betula nana and B. glandulosa) projected under current and future 
climate conditions using true absence and pseudo-absence models. Banks Island is inset over the mainland portion of the study area 
for enhanced visualization. Plots (A)–(D) correspond to differences between climate projections and data types along the columns and 
rows.
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Frost and Epstein 2014; Martin et al. 2017). Of particular 
note, greater increases in temperature across Banks 
Island compared to the Yukon North Slope, 
Tuktoyaktuk Coastlands, and Bathurst Peninsula 

(Supplementary Figure S6a) resulted in predictions of 
higher future suitability in this region.

Our finding that future habitat suitability differed 
among species suggests that shrubs will respond 

Figure 4. Ensemble habitat suitability maps (gray box) for marsh Labrador tea (Ledum decumbens) projected under current and future 
climate conditions using true absence and pseudo-absence models. Banks Island is inset over the mainland portion of the study area 
for enhanced visualization. Plots (A)–(D) correspond to differences between climate projections and data types along the columns and 
rows.

Table 7. Ranking of the top five variables for each model in order of importance (1 is most important) for each species for both true 
absence (TA) and pseudo-absence (PA) models.

Species

Annual 
mean  

temperature

Mean  
diurnal 
range Isothermality

Temperature  
seasonality

Mean  
temperature 

of the coldest 
quarter

Precipitation  
seasonality

Precipitation 
of the 

warmest 
quarter Elevation Slope Ruggedness

Alder (Alnus 
viridis)

TA 5 — 4 — — 1 2 3 — —
PA 5 — 3 — — 4 2 1 — —

Birch (Betula 
nana and  
B. glandulosa)

TA 1 — — — 5 2 3 4 — —
PA 3 2 4 — 1 — — 5 — —

Labrador tea 
(Ledum 
decumbens)

TA 1 — 3 — — 2 5 4 — —
PA 1 — — — 5 4 2 3 — —

Bog bilberry 
(Vaccinium 
uliginosum)

TA 3 1 — — — — 5 2 4 —
PA 3 — — 5 2 4 1 — — —

Lingonberry 
(V. vitis-idaea)

TA 1 — 5 — 4 2 3 — — —
PA 4 — 5 — 2 — 1 3 — —

Note. The top three variables in each model are shown in bold red and the five least important variables are noted with a dash. TA = true absence; PA = pseudo- 
absence.
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individualistically to climate warming based on resource 
requirements and physiological adaptations (Chapin 
et al. 1996). This is also evidenced by our observations 
of differences in variable importance among the species 
we modeled using true absence data. The importance of 
precipitation seasonality, particularly for alder and 
Labrador tea, shows that climate-driven expansion in 
these species will likely be mediated by soil moisture. 
Precipitation seasonality is linked to the temporal avail-
ability of water across the landscape, which, in conjunc-
tion with the physical properties of soil, influences 
a plant’s ability to access and retain moisture 
(O’Donnell and Ignizio 2012; Renne et al. 2019). This 
explanation is consistent with recent findings showing 
that growth and productivity of alder in upslope areas is 
moisture limited (Black, Wallace, and Baltzer 2021). 
Higher soil moisture has also been associated with pro-
liferation of tundra shrubs in general (Tape, Sturm, and 
Racine 2006; Frost and Epstein 2014; Myers-Smith et al. 
2015; Cameron and Lantz 2016; Ackerman et al. 2017) 
and increased vegetation growth (Elmendorf et al. 2012; 

Ackerman et al. 2017; Bjorkman et al. 2018) on these 
dynamic landscapes.

Our analysis also suggests that physiological toler-
ances in birch and lingonberry will mediate how their 
ranges will respond to ongoing warming. The relatively 
high importance of annual mean temperature in these 
models compared to variability in precipitation variables 
for these species suggests that birch and lingonberry will 
be less moisture limited under a warmer climate 
(Figures 3 and 6). This finding is consistent with pre-
vious research showing the greater tolerance of lingon-
berry to a range of environmental conditions 
(Taulavuori, Laine, and Taulavuori 2013). Several stu-
dies also show that these species can respond rapidly to 
increased temperature. Lingonberry exhibits increased 
shoot growth in response to rising temperature 
(Shevtsova, Haukioja, and Ojala 1997) and dwarf birch 
responds to experimental warming with earlier germi-
nation and higher recruitment (Milbau et al. 2009). 
Dwarf birch is also capable of rapid secondary growth 
and reproduction under warming-induced increases in 

Figure 5. Ensemble habitat suitability maps (gray box) for bog bilberry (Vaccinium uliginosum) projected under current and future 
climate conditions using true absence and pseudo-absence models. Banks Island is inset over the mainland portion of the study area 
for enhanced visualization. Plots (A)–(D) correspond to differences between climate projections and data types along the columns and 
rows.
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soil nutrient mineralization (Bret-Harte, Shaver, and 
Chapin 2002).

It is important to note that the observed shifts in 
habitat suitability predicted by our SDMs do not con-
sider all ecological factors that can limit dispersal and 
recruitment such as biotic (i.e., species interactions) or 
abiotic (i.e., seedbed conditions) vectors (Angers- 
Blondin, Myers-Smith, and Boudreau 2018) or unrea-
sonably large distances (i.e., across large water bodies). 
For example, small populations of birch, Labrador tea, 
bog bilberry, and lingonberry on Banks Island (Aiken 
et al. 2007) provide seed sources that could facilitate 
range expansion consistent with our SDMs. Yet, the 
absence of alder on Banks Island suggests that seed 
limitation will cause range expansion in this species to 
lag behind the presence of a suitable climate. Increased 
density of birch (Ropars and Boudreau 2012) and alder 
(Travers-Smith and Lantz 2020) across the low Arctic 
and subarctic without significant range expansion also 
indicates that dispersal limitation can cause temporal 
lags between warming and range expansion (Svenning 
and Sandel 2013).

In addition to dispersal limitations, tundra vegetation 
dynamics are heavily influenced by disturbance (Lantz 
et al. 2009; Lantz, Gergel, and Henry 2010; Wang et al. 
2020; Chen, Hu, and Lara 2021; Lantz, Zhang, and 
Kokelj 2022). Wildfire, in particular, can cause signifi-
cant responses in shrub growth, which can be either 
positive or negative depending on fire size, frequency, 
severity, and substrate (Lantz, Gergel, and Henry 2010; 
Chen 2020; Travers-Smith and Lantz 2020; Chen, Hu, 
and Lara 2021). Thermokarst processes have also been 
associated with increased shrub abundance (Lantz et al. 
2009; Frost et al. 2013; Wolter et al. 2016; Huebner, 
Buchwal, and Bret-Harte 2022; Lantz, Zhang, and 
Kokelj 2022) and are likely to play a role in changing 
shrub distributions. Advances in landscape and global 
modeling efforts and our understanding of vegetation 
ecology and responses to disturbance are crucial for 
understanding how landscapes are changing and how 
they will influence larger systems.

Differences in suitability among models parameter-
ized with true absence and pseudo-absence data high-
light the sensitivity of SDMs and suggest that model 

Figure 6. Ensemble habitat suitability maps (gray box) for lingonberry (Vaccinium vitis-idaea) projected under current and future 
climate conditions using true absences and pseudo-absences models. Banks Island is inset over the mainland portion of the study area 
for enhanced visualization. Plots (A)–(D) correspond to differences between climate projections and data types along the columns and 
rows.
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outputs should be compared to expert knowledge and 
ecological information of processes known to drive dis-
persal and recruitment. Additionally, combined model-
ing approaches including mechanistic models, 
longitudinal studies, and other experimental data 
sources could improve model design and interpretation. 
The statistical outputs of SDMs based on observations of 
presences and absences also do not account for factors 
including microsite availability and predation that fre-
quently limit recruitment (Soberón and Nakamura 
2009). Differences in the projected response of alder, 
birch, Labrador tea, bog bilberry, and lingonberry also 
highlight the importance of using species-based assess-
ments of change to parameterize larger scale dynamic 
vegetation models. Dynamic vegetation models are com-
monplace in coupled Earth system models and GCMs, 
and advances in the implementation and accuracy of 
species-based modeling will benefit climate projections 
(Quillet, Peng, and Garneau 2010). This is clearly 

demonstrated by Druel et al. (2019), whose implementa-
tion of a dynamic global vegetation model (ORCHIDEE 
Land Surface Model) did not reproduce significant 
shrub expansion that has been observed across the cir-
cumpolar north (Tape, Sturm, and Racine 2006; Lantz, 
Marsh, and Kokelj 2013; Fraser et al. 2014; Moffat et al. 
2016; Myers-Smith and Hik 2018). This is likely the 
product of local heterogeneity in microclimate or micro-
topographic conditions (see Ropars and Boudreau 2012; 
Gamon et al. 2013; Bjorkman et al. 2018; Mekonnen, 
Riley, Grant et al. 2021; Seider et al. 2022), an idea 
supported by Druel et al. (2019) and our own results 
highlighting the importance of species-specific response 
data. Parametrizing Earth system models appropriately 
is important because terrestrial vegetation impacts the 
climate system by influencing energy fluxes (i.e., surface 
reflectance, carbon exchange) and surface conditions 
(i.e., moisture, nutrients, temperature; Mekonnen, 
Riley, Grant et al. 2021). Coupled Earth system models 

Figure 7. Importance scores for the predictor variables used in true absence ensemble SDM for each species.
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typically ignore dynamic trait-based vegetation response 
to climate in favor of static functional tolerances (Van 
Bodegom et al. 2012; Wullschleger et al. 2014). Though 
simplification is necessary in global models, the use of 
broad vegetation functional types (grass, tree, cropland, 
etc.) may not accurately characterize vegetation change 
at high latitudes. Individual-based models (see Kruse 
et al. 2016) can be used to incorporate ecophysiological 
responses and species traits to determine responses to 
climate change. There are also promising advances in 
joint species distribution modeling, using a combination 
of traditional single-species SDM methods and ordina-
tion techniques to understand the interactions of multi-
ple species from a community ecology perspective 
(Ovaskainen and Abrego 2020). These models can 
more directly account for interactions among species 
and can handle rare species better than traditional 
SDMs (Ovaskainen and Abrego 2020). With these 
advances in mind, it is still important to consider the 
data type used in modeling efforts. Our results show that 
data type can have a strong influence on models and, as 
such, decisions regarding which parameterization data 
to use must be made carefully.

Influence of data type

Our analysis shows that the data type used to parameter-
ize SDMs impacts model performance and predictions 
and is a critical consideration in model interpretation. 
Projected species distributions, model performance, and 
ranked variable importance from models built using 
pseudo-absence data deviated considerably from models 
that used true absence data. Differences between true 
absence and pseudo-absence models suggest that true 
absence data are needed to reliably define low suitability 
habitats that are not adequately sampled through the 
pseudo-absence selection process (Brotons et al. 2004; 
Soberón and Nakamura 2009).

Differences in projected habitat suitability in our 
pseudo-absence models were likely caused by the random 
allocation of pseudo-absence locations across a wider 
range of climate and terrain conditions compared to 
true absences. Because pseudo-absences are not definitive 
locations of absence, they do not accurately represent 
limiting environmental conditions but provide 
a random sample of representative background data 
(Soberón and Nakamura 2009). Further, the possible 
allocation of pseudo-absence locations within the actual 
distribution of a species results in lower suitability esti-
mates than true absence models that include nonambig-
uous absence data. Another common SDM algorithm 
that uses pseudo-absence data (referred to as background 

data) called MAXENT (Phillips, Anderson, and Schapire 
2006) has also been shown to be highly sensitive to 
sampling bias caused in both presence and background 
data (Elith et al. 2006, 2011). Although true absence 
models are generally preferred because they provide 
information on low habitat suitability (Brotons et al. 
2004), the accessibility of presence-only data makes the 
use of pseudo-absences in SDMs very popular (Santini 
et al. 2021).

The widespread use of pseudo-absence models 
(Santini et al. 2021) is concerning because our results 
indicate that models built using pseudo-absence data 
yield different results than those built using true absence 
data. There is also no clear evidence to support best 
practices for pseudo-absence selection (Santini et al. 
2021), and the optimal number of pseudo-absence 
points has been found to vary considerably between 
modeling algorithms (Barbet-Massin et al. 2012). The 
spatial extent from which pseudo-absences are selected 
also poses potential problems, because too large or small 
an area can create models that are not biologically rele-
vant (Vanderwal et al. 2009). To facilitate the develop-
ment of accurate, reliable, and better performing 
models, we encourage the use of open data repositories 
to make true absence data more widely accessible. In 
addition, we suggest the use of comprehensive, systema-
tic presence/absence data collection as part of botanical 
inventories (Saarela, Sokoloff, and Bull 2017; Saarela 
et al. 2020).

Our results have important implications for predict-
ing vegetation changes across Arctic and Subarctic eco-
systems in support of conservation and land 
management decision making (Guisan et al. 2013). 
Recent work has stressed the importance of including 
SDM research in International Union for Conservation 
of Nature Red List developments (Breiner et al. 2017), 
conservation of endemic and rare species (Marcer et al. 
2013; Wang et al. 2015), and monitoring species inva-
sion in protected areas (Pěknicová and Berchová- 
Bímová 2016; Barbet-Massin et al. 2018). In all of these 
cases, models built with pseudo-absence data that may 
not adequately describe species’ distributions and 
responses to change may contribute to ineffective or 
potentially harmful decisions (Vanderwal et al. 2009).
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